Binomial distribution
Definition: XβΌB(n,p)
- When event X has binary response, either fail or success
- Condition:
- The same experiment is repeated a fixed number of times
- There are only 2 possible outcomes, success and failure
- The repeated trials are independent, so that the probability of success remains the same for each trial
Probability mass function
Expected value E[X]=np
- Proof: ^72433b
- Let X be a binomial random variable with parameters n and p
- Then X=i=1βnβXiβ where Xiβ{10βifΒ theΒ ithΒ trialΒ successotherwiseβ
- XiββΌB(1,p)βE[Xiβ]=1βp+0β(1βp)=p
- E[X]=βE[Xiβ]=np
Variance Var(X)=npq
- Proof:
- Similarly for above, Var(Xiβ)=pβp2
- Var(X)=Var(X1β)+...+Var(Xnβ)=n(pβp2)=n.p.(1βp)
Sum of independent Binomial distribution: