Conditional Probability, Product Rule, Independent Events, Bayes Theorem Context: Source: Relation: Insight: Conditional Prob: P(E∣F)=P(F)P(E∩F) Product Rule: P(E∩F)=P(E)⋅P(F∣E)=P(F)⋅P(E∣F) Inde Events (IE): P(E∣F)=P(E),P(F∣E)=P(F) Prove IE/Prod Rule IE: P(E∩F)=P(E)⋅P(F) Bayes: P(F∣E)=P(E)P(F∩E)=P(F)⋅P(E∣F)+P(F′)⋅P(E∣F′)P(F)⋅P(E∣F)