Confidence interval
Description:
For mean of known standard deviation:
A confidence interval for a Population mean Ξ , is an interval of values between two limits, together with a percentage indicating our confidence that Ξ lies in that interval
For Z = Ï / n â X Ë n â â Ξ â
P ( â a âĪ Z âĪ a ) = Îą â P ( Z âĪ a ) = 1 â 2 Îą â + Îą = z 2 Îą â â
Îą is the area under graph between 2 limits while z Îą /2 â is the upper limit
C I = { x Ë n â â z 2 Îą â â n â Ï â âĪ Îž âĪ x Ë n â + z 2 Îą â â n â Ï â }
The width is then 2 Ã z 2 Îą â â n â Ï â
For mean of unknown sd:
For population proportional:
True population proportion p is unknown
p Ë â = n X â
E [ p Ë â ] = p and Ï ( p Ë â ) = n pq â â
By Central limit theorem , p Ë â âž N ( p , n pq â )
 ι CI = p Ë â Âą z Îą /2 â n p Ë â ( 1 â p Ë â ) â â
For difference of two variables:
Difference random variable of 2 variables
For known Ï
C I ( Îą ) = x Ë 1 â â x Ë 2 â Âą z Îą /2 â n 1 â Ï 1 2 â â + n 2 â Ï 2 2 â â â
For unknown Ï
C I ( Îą ) = x Ë 1 â â x Ë 2 â Âą t Îą /2 â n 1 â s 1 2 â â + n 2 â s 2 2 â â â
( x = 2 a â b Âą b 2 â 4 a c â â )