If X1,⋯,Xn are pairwise independent (Xi and Xj independent for i=j)
Var(∑i=1nXi)=∑i=1nVar(Xi)→ var of sum = sum of var
Sample variance, variance of sample mean, expectation of sample variance
Xi,⋯,Xn is sequence of independent + identically distributed RV, expected value μ, variance σ2, sample mean Xˉ⇒S2=∑i=1nn−1(Xi−Xˉ)2
Variance of Binomial RV, para n and p
X=X1+⋯+Xn, where Xi are independent Bernoulli RV, such that Xi={10iftheithtrialisasuccessotherwise⇒Var(X)=Var(X1)+⋅⋅⋅+Var(Xn)=np(1−p) as Var(Xi)=p−p2 for all i
Correlation of 2 RV, ρ(X,Y):
⇒ρ(X,Y)=Var(X)Var(Y)Cov(X,Y)⇒−1≤ρ(X,Y)≤1
ρ(X,Y)=1impliesY=a+bX,whereb=σy/σx>0
ρ(X,Y)=−1impliesY=a+bX,b=−σy/σx<0
Correlation coefficient: measure of degree of linearity btw X, Y
ρ(X,Y)near1 or ρ(X,Y)near−1⇒ high linearity btw X and Y
ρ(X,Y)near0⇒ absent linearity
ρ(X,Y)=0⇒ uncorrelated
ρ(X,Y)>0: Y increases when X increases
ρ(X,Y)<0: Y decreases when X increases
Conditional Expectation
DRV: E[X∣Y=y]=∑xxP(X=x∣Y=y), for all y such that pY(y)>0
CRV: E[X∣Y=y]=∫−∞∞xfX∣Y(x∣y)dx, where fX∣Y(x∣y)=fY(y)f(x,y)
BSKT:
fX(x)=∫−∞∞f(x,y)dy→ integrate w.r.t y
fY(y)=∫−∞∞f(x,y)dx→ integrate w.r.t x
Conditional expectation satisfy properties of ordinary expectation